Improving SMOTE with Fuzzy Rough Prototype Selection to Detect Noise in Imbalanced Classification Data

نویسندگان

  • Nele Verbiest
  • Enislay Ramentol
  • Chris Cornelis
  • Francisco Herrera
چکیده

In this paper, we present a prototype selection technique for imbalanced data, Fuzzy Rough Imbalanced Prototype Selection (FRIPS), to improve the quality of the artificial instances generated by the Synthetic Minority Over-sampling TEchnique (SMOTE). Using fuzzy rough set theory, the noise level of each instance is measured, and instances for which the noise level exceeds a certain threshold level are deleted. The threshold is determined using a wrapper approach that evaluates the training Area Under the Curve of candidate subsets. This proposal aims to clean noisy data before applying SMOTE, such that SMOTE can generate high quality artificial data. Experiments on artificial data show that FRIPS in combination with SMOTE outperforms state-of-the-art methods, and that it particularly performs well in the presence of noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection

The Synthetic Minority Over Sampling TEchnique (SMOTE) is a widely used technique to balance imbalanced data. In this paper we focus on improving SMOTE in the presence of class noise. Many improvements of SMOTE have been proposed, mostly cleaning or improving the data after applying SMOTE. Our approach differs from these approaches by the fact that it cleans the data before applying SMOTE, such...

متن کامل

Fuzzy-rough imbalanced learning for the diagnosis of High Voltage Circuit Breaker maintenance: The SMOTE-FRST-2T algorithm

For any electric power system, it is crucial to guarantee a reliable performance of its High Voltage Circuit Breaker (HCVB). Determining when the HCVB needs maintenance is an important and non-trivial problem, since these devices are used over extensive periods of time. In this paper, we propose the use of data mining techniques in order to predict the need of maintenance. In the corresponding ...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering

Classification datasets often have an unequal class distribution among their examples. This problem is known as imbalanced classification. The Synthetic Minority Over-sampling Technique (SMOTE) is one of the most well-know data pre-processing methods to cope with it and tobalance thedifferentnumberof examples of eachclass.However, as recentworks claim, class imbalance is not a problem in itself...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012